2 SÉRIES: MODÈLE K / MODÈLE E (P. 157)

SÉRIE K

Tête à filetage mâle : GA-EA Coussinets: GL-GE

Les têtes de bielle (ou coussinets) sont composés de :

- une cage extérieure (en acier ou inox)
- une sphère (en acier ou inox)
- une bague intermédiaire (en Bronze d'Aluminium ou en Bronze spécial de haute résistance - ou encore en inox.)

Les têtes de bielle série W (sans entretien) ont en sus un film Téflon (voir ci-dessous)

Une série "Acier sur Acier" est livrable sans bague intermédiaire (voir ci-dessous)

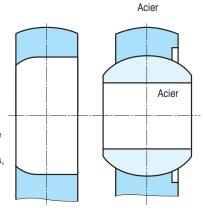
TÊTES DE BIELLE

(Téflon)

Désignation Tête de bielle : GI (GA) Type D Coussinets : GL Type **TYPE W** Film PTFE

Sans entretien

Un film Téflon est intercalé entre la bague et la sphère supprimant tout jeu ainsi que le besoin de graissage.


Vitesse max. 10 m/mn

TYPES GIO-GAO

Acier sur acier

La cage extérieure est usinée comme le montre le dessin ci-contre et. dans le sens des flèches, elle offre une résistance accrue aux poussées axiales.

Diamètre max. : 20 mm

DONNEES TECHNIQUES ET PRIX MODIFIABLES SANS PREAVIS

Туре	Cage	Bague intermédiaire	Sphère	Film	Ød	Température
GI-GA	5 à 12 : acier 9smn pb 28k 14 à 25 : acier traité c22	Bronze Cu Zn 40 al1	Acier 100 Cr6	-	5 à 25	-50° à +200°C
GIS-GAS	2 à 12 : acier 9s mn pb 28k 14 à 40 : acier traité c22	Bronze spécial Cu Sn 8	Acier 100 Cr6	-	2 à 40	-50° à +230°C
GIXS-GAXS	acier traité 42 cr m04	Bronze spécial Cu Sn 8	Acier 100 Cr6	-	6 à 30	-50° à +230°C
GIRS-GARS*	acier INOX DiN 1,4057	Bronze spécial Cu Sn 8	Acier 100 Cr6	-	3 à 35	-50° à +230°C
GISW-GASW	5 à 12 : acier 9s mn pb 28k 14 à 40 : acier traité c22	Acier 9 s mn Pb 28 k	Acier 100 Cr6	PTFE	5 à 40	-30° à +150°C
GIXSW-GAXSW	acier traité 42cr m04	Acier 9 s mn Pb 28 k	Acier 100 Cr6	PTFE	6 à 30	-30° à +150°C
GIRSW-GARSW**	acier INOX DiN 1,4057	Bronze spécial Cu Sn 8	Acier 100 Cr6	PTFE	5 à 35	-30° à +150°C
GIO-GAO	5 à 12 : acier 9s mn pb 28k 14 à 20 : acier traité c22	-	Acier 100 Cr6	-	5 à 20	-50° à +200°C
GIOW-GAOW	4 à 12 : acier 9s mn pb 28k 14 à 20 : acier traité c22	-	Acier 100 Cr6	PTFE	4 à 20	-30° à +150°C
G2RS	Dans version s, xs, rs, sW, xsW, rsW avec joints 2 rs rési	stants aux huiles, graisses,pétrole	e			
GbO	Dans version s, xs, rs, sW, xsW rsW avec goujon fileté e	n 9s mn pb 28 k ou inox 1,4305				
GI	9s mn Pb 28 k	Bronze Cu Zn 40 al 1	Acier 100 Cr6	-	5 à 25	-50° à +200°C
GIXS	9s mn Pb 28 k	Bronze spécial Cu Sn 8	Acier 100 Cr6	-	3 à 40	-50° à +230°C
GIRS*	INOX DiN 1,4305	Bronze spécial Cu Sn 8	Acier 100 Cr6	-	3 à 40	-50° à +230°C
GIXSW	9s mn pb 28 k	Acier 9s mn Pb 28k	Acier 100 Cr6	PTFE	5 à 40	-30° à +150°C
GIRSW**	INOX DiN 1,4305	Bronze spécial Cu Sn8	Acier 100 Cr6	PTFE	5 à 40	-30° à +150°C
GXS	-	Bronze spécial Cu Sn 8	Acier 100 Cr6	-	2 à 40	-50° à +230°C
GXSW	-	Acier 9s mn Pb 28k	Acier 100 Cr6	PTFE	5 à 40	-30° à +150°C

Livrable, comme ci-dessus avec sphère inox + bague inox 1.4571 : Suffixe RR en fin de référence PRUD'HOMME TRANSMISSIONS - F 93203 SAINT-DENIS CEDEX - TEL. 01 48 11 46 00 - FAX. 01 48 34 49 49 - www.prudhomme-trans.com - info@prudhomme-trans.com

Livrable également avec sphère en inox (1.4034 ou 1.4401)

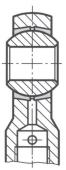
SOUS RÉSERVE DE TOUTE MODIFICATION DE CONSTRUCTION OU D'ERREUR TYPOGRAPHIQUE

: Suffixe R en fin de référence

SÉRIE K

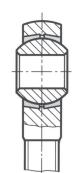
Din 648 Tolérance de l'arbre = g6

Désignation Type Diam. Intérieur D


Ex.: GIRS-35 (cage en inox) Ex.: GARSW-10-RR (tout inox)

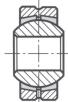
TETES DE BIELLE TÊTES DE BIELLE COUSSINETS À FILETAGE FEMELLE À FILETAGE MÂLE **CYLINDRIQUES**

Gl.. 5 à 25


Série standard économique.

Utilisé spécialement en cas de charges axiales V = 30 m/mn

GA.. 5 à 25


Série standard économique Utilisé spécialement en cas de charges axiales V = 30 m/mn

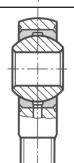
GL.. 5 à 25

Série standard avec cage extérieure


Utilisé spécialement en cas de charges axiales V = 30 m/mn

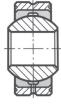
GIS.. 2 à 40 Série renforcée

GIXS 6 à 30 Série renforcée haute résistance


GIRS.. 3 à 35 Série inox renforcée V = 60 m/mn

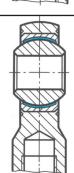
GAS.. 2 à 40 Série renforcée

GAXS.. 6 à 30 Série renforcée haute résistance


GARS.. 3 à 35 Série inox renforcée V = 60 m/mn

GLXS.. 3 à 40

Série renforcée Haute résistance (grandes vitesses)



GISW.. 5 à 40 Série renforcée

sans entretien GIXSW.. 6 à 30

Série renforcée haute résistance sans entretien

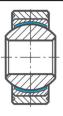
GIRSW.. 5 à 35 Série inox renforcée sans entretien V = 10 m/mn

GASW.. 5 à 40

Série renforcée sans entretien

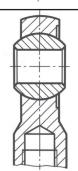
GAXSW.. 6 à 30

Série renforcée Haute résistance sans entretien


GLXSW.. 5 à 40

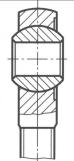
Série renforcée Haute résistance sans entretien (faibles vitesses)

Série inox renforcée sans entretien (faibles vitesses)


V = 10 m/mn

GIO.. 5 à 20

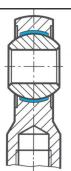
Série simplifiée acier sur acier (sans bague)


Pour grandes charges axiales dans une seule direction avec mouvements oscillants limités

GAO.. 5 à 20

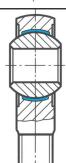
Série simplifiée acier sur acier (sans bague)

Pour grandes charges axiales dans une seule direction, avec mouvements oscillants limités


GXS.. 2 à 40

Série spéciale Sans cage extérieure (livrable également en version inox)

GIOW.. 4 à 20 Série simplifiée


sans bague avec film Téflon entre cage et sphère

GAOW.. 4 à 20

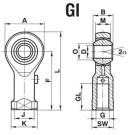
Série simplifiée sans bague

Avec film Téflon entre cage et sphère

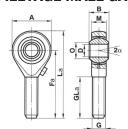
GXSW.. 5 à 40

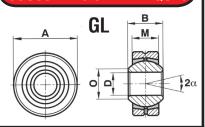
Série spéciale sans cage extérieure mais avec film Téflon entre sphère et bague. (Pour basses vitesses et sous hautes pressions et charges dynamiques)

(Livrables également en

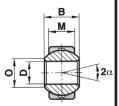

PRUD'HOMME TRANSMISSIONS - F 93203 SAINT-DENIS CEDEX - TEL. 01 48 11 46 00 - FAX. 01 48 34 49 49 - www.prudhomme-trans.com - info@prudhomme-trans.com SOUS RÉSERVE DE TOUTE MODIFICATION DE CONSTRUCTION OU D'ERREUR TYPOGRAPHIQUE DONNEES TECHNIQUES ET PRIX MODIFIABLES SANS PREAVIS 154

SÉRIE K


TÊTES DE BIELLE

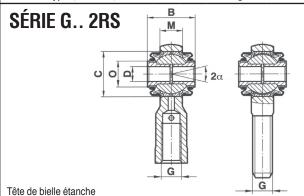

FILETAGE FEMELLE

FILETAGE MÂLE GA


COUSSINETS CYLINDRIQUES

GXS - GXSW

Ensembles bague sphère sans cage $A = \emptyset$ ext. Sur bague



Dimensions: dérivés = inox (R) - haute résistance (x) - sans entretien (w) - série renforcée (S)

			IS GA				ute resistance (A) Salis ell	ii Cii Cii (V		Γous t		J)		То	us typ	es	Туре		
		IO-GA	O-GL dérivé	-GLXS		GL et dérivés	Tous ty	Tous types			G				GA			GX	Angle pivote	
Type x D) (h7)	В	М	0	Α	Α	DK Ø sphère	G*	F	L	GL	K	J	SW	Fa	La	GLa	Α	α°	CETOP
	2	4,8	3,6	3,6	9	-	6	2 x 0,4	16	20,5	7	4,5	3,8	4	20	24,5	12	6,5		
	3	6	4,5	5,1	14	12	7,94	3 x 0,5	21	27	10	6,5	5	5,5	26	33	15	9		
	5	8	6	7,7	18	16	11,11	5 x 0,8	27	36	10	11	9	9	33	42	20	13		4 x 0,7
⊕ ⊕	6	9	6,75	8,9	20	18	12,7	6 x 1	30	40	12	13	10	11	36	46	22	15	13 °	6 x 1
and	8	12	9	10,4	24	22	15,87	8 x 1,25	36	48	16	16	12,5	13	42	54	25	18		8 x 1,25
seulement sur demande)	10	14	10,5	12,9	28	26	19,05	10 x 1,5	43	57	20	19	15	17	48	62	29	21		10 x 1,25
	12	16	12	15,4	32	30	22,22	12 x 1,75	50	66	22	22	17,5	19	54	70	33	24,5		12 x 1,5
ite s	14	19	13,5	16,6	36	34	25,4	14 x 2	57	75	25	25	20	22	60	78	38	28		
à droite gauche s	16	21	15	19,3	42	38	28,57	16 x 2	64	85	28	27	22	22	66	87	40	31,5		16 x 1,5
e à à ga	18	23	16,5	21,8	46	42	31,75	18 x 1,5*	71	94	32	31	25	27	72	95	44	34,5		
Filetage a	20	25	18	24,3	50	46	34,92	20 x 1,5*	77	102	33	34	27,5	32	78	103	47	38		20 x 1,5
File	22	28	20	25,8	54	50	38,1	22 x 1,5*	84	111	37	37	30	32	84	111	51	41	15 °	
<u> </u>	25	31	22	29,6	60	56	42,85	24 x 2*	94	124	42	42	33,5	36	94	124	58	46		24 x 2
	30	37	25	34,8	70	66	50,8	30 x 2*	110	145	51	51	40	41	110	145	71	54		27 x 2
	35	43	28	37,7	80	78	57,15	36 x 2	125	165	56	56	46	50	125	165	77	62		36 x 2
	40	49	35	44,2	90	87	65,96	42 x 2	142	187	60	69	57	60	142	187	78	72		42 x 2
Tolérances	H7 ±	0 0,1	0 0,1		0 0,2	0 h6**		ISO Din 13	0,2 0,2	0,3 0,3	0	0,2 0,2	0,2 0,2		0,2 0,2	0,3 0,3	0	0 0,012		iges fin plus les CETOP pour vérins

G*: Tous types, sauf GL, GLXS et dérivés - **Alésage carter: J7

Pour G.S. - G. XS - G.RS - G.SW - G.XSW - G.RSW

SÉRIE G.. - BO

Tête de bielle avec goujon utilisé pour connexion et angle droit

Pour G.S. - G.XS - G.RS G.SW - G.RSW

i oui o	.0. 0.70	0.110	G.011	G.7(011	G.11011			i oui a.c	J. G./10	a.i io a.o.i	G.7(011	G.11011			
Taille	D	В	W	С	0	G	Angle Max	Taille	L	L1	GL	G	D	SW	Poids
8	6	19	9	18	10,5	M8	10°	6	18,5	5,5	10	m6	9	8	10
10	8	21	10,5	21	12,5	M10	10°	8	23,5	6,5	13	m8	10,5	8	12
12	10	23	12	25,5	15,5	M12	10°	10	28	7	17	m10	13	12	25
14	12	26	13,5	29	17	M14	12°	12	32,5	7,5	20	m12	15	14	40
16	14	28	15	32	18,5	M16	12°	14	37,5	8,5	22	m14	17	14	65
20	18	32	18	38	22	M20 x 1,5	12°	16	42,5	9,5	24	m16	19	17	90

Désignation

Têtes de bielle : El (EA)

Type

Coussinets : GE Type D

• ANGLE DE PIVOTEMENT α ENTRE 6 ET 12°

 Têtes de bielle acier sur acier EI (ou EA) x Ø D

 Têtes de bielle acier sur PTFE sans entretien EI.D (ou EA.D) x Ø D

EIDZX (ou EADZX) x ØD

 Coussinet acier sur acier GEE x Ø D

 Coussinet acier sur PTFE sans entretien GEEC x Ø D

 Têtes de bielle acier inox sur PTFF sans entretien
 Coussinet acier inox sur PTFF sans entretien GEEC-ZX x Ø D

Alésage Ø D

Tolérance sur Ø D

Ø 5 - 18 - - $0,-8\mu$ Ø 20-30 - - 0,-10µ

Ø 35-50 - - 0,-12 μ Ø 60-80 - - 0,-15µ **Arbres**

Tolérance recommandée pour l'arbre: g7

DIN 648

Diamètre extérieur du coussinet

• tolérance sur Ø ext. : h5

· tolérance d'usinage du carter : JS.

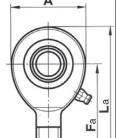
TÊTE DE BIELLE À FILETAGE FEMELLE

TÊTES DE BIELLE À FILETAGE MÂLE

COUSSINETS CYLINDRIQUES

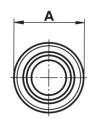
El.. 6 à 80

Acier sur acier Étanche des 2 côtés


à partir de la taille 17 (sur demande)

EA.. 6 à 80 Acier sur acier

Étanche des 2 côtés à partir de la taille 17


(sur demande)

GEE.. 6 à 80

Acier sur acier Étanche des 2 côtés

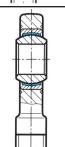
à partir de la taille 17 (sur demande)



EID.. 6 à 80

Acier sur PTFE Sans entretien

Étanche des 2 cotés (2RS)

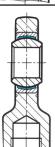

à partir de la taille 35 (sur demande)

EAD.. 6 à 80

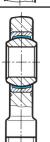
Acier sur PTFE Sans entretien Étanche des 2 cotés (2RS)

à partir de la taille 35 (sur demande)

GEEC.. 6 à 80


Acier sur PTFE Sans entretien Étanche des 2 cotés

(2RS) à partir de la taille 35 (sur demande)


EID-ZX.. 6 à 40

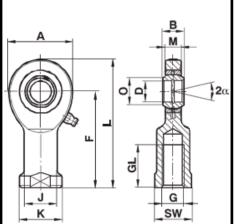
Acier inox sur PTFE sans entretien

EAD-ZX.. 6 à 40

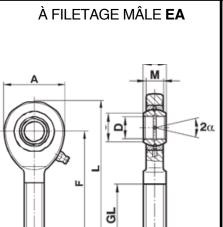
Acier inox sur PTFF sans entretien

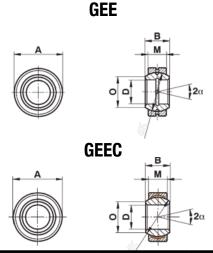
GEEC-ZX.. 6 à 40

Acier inox sur PTFE sans entretien



TÊTES DE BIELLE FORMES DE BASE TYPE E


TÊTES DE BIELLE


COUSSINETS CYLINDRIQUES

FILETAGE A DROITE UNIQUEMENT EN STOCK filetage à gauche sur demende

		EI-EA - EID - ZX GEE -					Tous t		Tous	types			Tous t	ypes El			Tous types EA		A	ment a°
	,	REF.	В	М	0	A	A *	М	DK Ø	G	F	L	GL	K	J	SW	Fa	La	Gla	Angle de pivotement $\alpha^{\!\scriptscriptstyle o}$
	Ta	ille xD							Sphère											Angl
	6		6	4,4	8	20	14	4	10	M6	30	40	12	13	10	11	36	46	18	
	8		8	6	10,2	24	16	6	13	M8	36	48	16	16	12,5	13	42	54	22	12°
	10	08µ	9	7	13,2	28	19	7	16	M10	43	57	20	19	15,0	17	48	62	26	
6	12	υ,-ομ	10	8	14,9	34	22	9	18	M12	50	67	22	22	17,5	19	54	71	28	
érenc	15		12	10	18,4	40	26	10	22	M14	61	81	29	26	21	22	63	83	34	8°
de réf	17	14	14	11	20,7	46	30	10	25	M16	67	90	33	30	24	27	69	92	36	8"
en fin	20		16	13	24,2	53	35	12	29	M20x1,5	77	103,5	38	35	27,5	32	78	104,5	43	
(lettre G en fin de référence)	25	0,-10µ	20	17	29,3	64	42	16	35,5	M24X2	94	126	48	42	33,5	36	94	126	53	
=	30		22	19	34,2	73	47	18	40,7	M30X2	110	146,5	56	50	40	41	110	146,5	65	
	35		25	21	39,8	82	55	20	47	M36x3	125	166	60	58	47	50	140	181	82	
	40	0.10,,	28	23	45,0	92	62	22	53	M39x3	142	188,0	65	65	52	55	150	196,0	86	
	45	0,-12 <i>µ</i>	32	27	50,8	102	68	26	60	M42x3	145	196,0	65	70	58	60	163	214,0	94	6°
	50		35	30	56	112	75	28	66	M45x3	160	216	68	75	62	65	185	241	107	
	60		44	38	66,8	135	90	36	80	M52x3	175	242,5	70	88	70	75	210	277,5	115	
	70	0,-15µ	49	42	77,9	160	105	40	92	M56x4	200	280	80	98	80	85	235	315	125	
	80		55	47	89,4	180	120	45	105	M64x4	230	320	85	110	95	100	270	360	140	

* cote A (GE): tolérance = h5 (Alésage J57)

	TETES DE	BIELLE			COUSS	INETS	
TYPE	CAGE	PALIER	GRAISSAGE	TYPE	BAGUE	SPHÈRE	GRAISSAGE
EI EA	6 à 10 9SMn Pb 28k 12 à 80 C 45	Acier sur acier à partir de Ø 17, étanche des 2 côtés (2RS)	6 à 17 : pas de graissage 20 à 80 : graissage par graisseurs	GEE	Acier 100 Cr6 avec bisulfide de Molybdène	Acier 100 Cr6	6 à 12 : pas de graissage
EID EAD	6 à 10 9SMn Pb 28k 12 à 80 C 45	Acier sur PTFE à partir de Ø 35, étanche des 2 côtés (2RS)	-	GEEC	Acier 100 Cr6 avec film PTFE	Acier 100 Cr6	-
EID-ZX EAD-ZX	6 à 10 1,4057 12 à 40 DIN 1,4801	Acier sur Inox sur PTFE	-	GEEC ZX	Acier Inox DIN 1,4006 avec film PTFE	Acier Inox DIN 1,4125	-

SÉLECTION

Voir page 159: tableau des charges Co et C et des vitesses

Vérifier que les 6 valeurs calculées ci-après soient inférieures à celles indiquées dans les tableaux

• 1 Charge statique :

$Cor = \frac{F}{fbfr}$

Cor < Co

F = charge axiale, radiale ou combinée fr = facteur de température (tabl. I)

fb = facteur de charge (tabl. II)

2 Charge dynamique:

$$Cr = \left(\frac{C}{F^{min}}\right) x F$$

P< p. Max.

V < V max.

· 3 Pression de surface:

$$\mathbf{P} = \frac{\mathbf{Pmax.}}{\mathbf{C/F}} (\text{N/mm}^2)$$

pmax. = voir tableau IV F = voir calcul des forces

· 4 Vitesse de glissement :

$$V = \frac{dk \times B \times f}{1000 \times 57.3 \times 60}$$
 (m/s)

(voir tableau de caractéristiques)

b = angle d'oscillationf = nombre d'oscillationsVmax. = voir tableau V

• 5 Contrôle des performances spécifiques :

 $PL = p \times V$

(PL max. = voir tableau VI)

· 6 Calcul de durée de vie

$Lh = 3 fl \times ft \times fg \times fn \times C F \times 1 V$

- fl = fact. de charge (tab. VII)
- fg = fact. de glissement (fonction de C/p - tableau VIII)
- ft = fact.de température (tabl. I)
- fn = fact. de relubrification (fonction de p. tabl. IX)

CALCUL DES FORCES

Forces sous charges statiques :

Naissance de forces radiales (Fr) ou axiales (Fa) Aucun mouvement entre sphère et bague.

Forces sous charges dynamiques :

Naissance de forces radiales seules ou axiales et radiales avec sphère pivotant d'un angle a, oscillant d'un angle b ou tournant relativement à la bague.

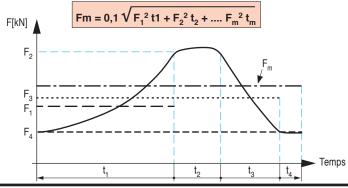
Forces équivalentes :

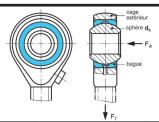
En cas de forces combinées (axiales et radiales), la charge équivalente par :

F = Fr + Y Fa

Y = voir tableau N° X

F < Fr max. (Fr max. = Co fb ft)


a = 0,5 pour GI/GA et GIO/GAO


F < Fa max. (Fa max. = a Co fb ft)

 $\mathbf{a} = 0.3$ pour les autres.

Force moyenne :

si la force radiale n'est pas constante on calculera la force moyenne **Fm** par

Température	80°C	100°C	150°C	200°C	250°C
avec graisse	1	1	1	0,8	0,5
sans entretien	1	1	0,8	0,5	0,3

I FACTEUR DE TEMPÉRATURE

F	constant	variable durée t
	f ₈ =1	f _B =0,5

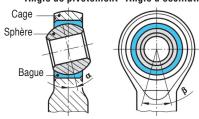
II FACTEUR DE CHARGE

(C/F) _{min.}	Acier /Laiton	Acier /Bronze	Acier /Acier	Acier /Bronze Haute qualité	Acier /Nylon
	2	2	2	150	1,5

III (C/F) min.

P (N/mm ²)	Acier /Laiton	Acier /Bronze	Acier /Acier	Acier /Bronze Haute qualité	Acier /Nylon
(, , , , , , , , , , , , , , , , , ,	50	50	50	150	50

IV PRESSION P. max.


V1 max. (m/s)	Oscillation	Révolution			
Acier/acier	0,15	0,10			
Acier/bronze	0,25	1,00			
Sans entretien	0,25	0,35			

V VITESSE DE GLISSEMENT V. max.

P _L max.	Acier/ acier ou bronze	Sans entretien
(W/mm ²)	0,5	1,3

VI PL max.

Angle de pivotement Angle d'oscillation

VII FACTEUR DE SENS DE CHARGE fI

Sens de charge	Acier/acier	Acier/bronze	Acier/PTFE
Unidirection	1	1	1
Variable	2,5	2	1

VIII FACTEUR DE GLISSEMENT F_G

C/F	1,5	2	3	4	6	8	10	15	20
Sans entretien	1,5	2,0	2,5	3,0	3,5	4,0	4,3	4,7	5,0
Graissé	1,1	1,2	1,3	1,4	1,6	1,8	2,1	2,4	2,5

IX FACTEUR DE RELUBRIFICATION f_n

P (N/mm²)		5	10	25	40
Graissé régulièrement		6	4	3	2
Graissage initial + PTFE		1	1	1	1
X FACTEUR y					
Rapport Fa/Fr	0,1	0,2	0,3	0,4	0,5
Graiceage initial + PTEE	Λ 0	4	1.5	2.5	2

CHARGES STATIQUES ET DYNAMIQUES - VITESSES - POIDS

	RÉF. SÉRIE K	2	3	4	5	6	8	10	12	14	16	18	20	22	25	30	35	40
CHARGES STATIQUES Co (KN)	GI	-	-	-	9,9	11,9	17,1	21,4	27,1	24,5	37,1	43,1	49,5	57,3	67,8	-	-	-
	GA	-	-	-	4,3	6	11	17,4	25,3	24,5	36,4	43,1	49,5	57,3	67,8	-	-	-
	GIS - GISW	3	4,1	-	8	8,9	14,1	19,3	23,5	20,8	32	38,6	43,8	52,6	62,4	81,6	100,8	124
	GAS - GASW	0,6	1,5	-	4,3	6	11	17,4	23,5	20,8	32	38,6	43,8	52,6	62,4	81,6	100,8	124
රි	GIXS - GIXSW	-	-	-	-	16,7	25,5	34,8	42,2	56,9	67,7	81,4	93,7	113,8	135,4	184,4	-	-
S	GAXS - GAXSW	-	-	-	-	9,8	19,5	31,4	42,2	56,9	67,7	81,4	93,7	113,8	135,4	184,4	-	-
l l	GIRS - GIRSW	-	8	-	11,8	13,1	20,7	28,3	34,5	39,4	60,6	73,2	83,1	99,7	118,3	154,8	191,2	-
ΑĬ	GARS - GARSW	-	7	-	6,2	8,8	16,1	25,5	34,5	39,4	60,6	73,2	83,1	99,7	118,3	154,8	191,2	-
ST	GIO	-	-	-	12	14,3	21,7	27,8	35,1	32,4	46,1	-	62,8	-	-	-	-	-
ES	GAO	-	-	-	4,3	6	11	17,4	25,3	26,7	36,4	-	62,8	-	-	-	-	-
8	GIOW	-	-	5,2	9,8	11,8	17,3	22,3	28,3	26	38,9	-	52,8	-	-	-	-	-
_ ₹	GAOW	-	-	2,6	4,3	6	11	17,4	25,3		36,4	-	52,8	-	-	-	-	-
	GL	-	-	-	10	12,8	21,6	30	40	51,6	64,4	78,4	94,4	114,4	141,6	-	-	-
	GLXS - GLRS - GXS	6,6	10,8	-	19,8	25,8	42,6	60	79,8		128,4	157,2	188,4	228,6	292,6	381	480	693
	GLXSW - GLRSW - GXSW	-	-	-	12,5	15,5	27,8	39	53,3	69,8	87,8	106,3	130,2	162	203,5	280,7	342,8	495,2
တ ပ	GI - GA - GL	-	-	-	2,5	3,2	5,4	7,5	10	12,9	16,1	19,6	23,6	28,6	35,4	-	-	-
CHARGES DYNA- MIQUES C (KN)	Tous S - XS - RS	1,1	1,8	-	3,3	4,3	7,1	10	13,3	,	21,4	26,2	31,4	38,1	47,1	63,5	80	115,5
CHARGE: DYNA- MIQUES ((KN)	Tous w (sauf GIA GAO)	-	-	-	7,5	9,3		23,4	32	41,9	52,7	63,8	78,1	97,2	122,1	168,4	205,7	297,1
동교육	GIO-GAO	-	-	-	2,2	2,8	4,6	6,5	8,7	11,1	13,9	-	20,4	-	-	-	-	-
	GIOW - GAOW	-	-	0,8	1,1	1,4	2,2	3,1	3,9		7	-	9,7	-	-	-	-	-
Ж	GI - GA - GL	-	-	-	900	760	620	500	450	360	350	320	280	250	230	-	-	-
VITESSE MAX (tr/mn)	Tous S - XS - RS	1400	1300	-	1200	1500	1200	1000	860	750	660	600	540	500	440	370	330	290
F _Z ₹	Tous W (sauf FGIO - GAO)	-	-	-	600	530	420	350	300	260	230	210	190	170	150	130	110	100
	GIO-GAO - GIOW GAOW							onçus p	_									
	Tous I (femelles)	3	6	11	18	27	46	76	115	170	230	320	415	540	750	1130	1600	2770
Poids	Tous A (mâles)	3	6	9	13	20	33	56	87	129	189	267	348	443	600	1030	1600	2550
8	Tous GL	-	5	-	8	12	23	38	58	83	115	150	200	270	375	540	850	1400
	Tous G	3	4	-	5	8	14	22	35	51	72	94	124	158	218	349	502	832
RÉF.SÉRIE E			6	8	10	12	15	17	20	25	30	35	40	45	50	60	70	80
CHARGES STAT.Co (KN)	Toute tête de bielle		8,2	12,9	17,6	24,5	36	45	60	83	110	146	180	240	290	450	585	710
	S Coussinet SEE		17	27	40	54	85	106	146	240	310	400	500	640	780	1220	1560	2000
	(N) Coussinet GEEC		9	14	21	28	44	56	78	127	166	224	280	360	440	695	880	1140
	Coussinet GEECZX		10	18	27	37	61	77	116	189	241	310	381	-	-	-	-	-
CHARGE DYN	EI, EA, GEE		3,4	5,5	8,1	10,8	17	21,2	30	48	62	80	100	127	156	245	315	400
	OYN. EID, EAD, GEEC		3,6	5,8	8,6	11,4	17,6	22	31,5	51	66,5	112	140	180	220	345	440	570
C (KN)	EID.ZX, EAD.ZX - GE.E	CZX	4	7	11	17	28	36	53		-	142	174	-	-	-	-	-
	EI - EID - EID.ZX		21	28	60	96	-			_		1300	2000	2500	3500	5550	8600	12000
	EA - EAD - EAD-7X		16	28	50							1400	1800	2610	3450	5900	8200	12000
Poids (g	GE.E, GEEC		4	7	11	16	25	38				220	300	400	540	1000	1500	2200
	GE.ECZX		4	7	11	17	30	40		_		230	320	-	-	- 1000	-	
	GL.LUZA		- 4	1	11	17	50	40	UU	120	100	200	020					

EXEMPLES DE DÉTERMINATION

Données :

Déterminer une tête de bielle à filetage femelle: L'encombrement nécessite une taille 16. Pas de charge axiale - Charge radiale de 2 kN

angle β = 20° - 150 oscillations par mn. Temp. 50°C - Graissage.

GIO est éliminé (pas de graissage) ainsi que GIRS (pas d'environnement corrosif) Restent : GI 16 - GIS 16 - GIXS 16.

Choisissons par ex. GIS 16.

Les tableaux ci-dessus et des pages précédentes donnent :

dk = 28,6 Co = 37,1 C = 16,1
1) Cor =
$$\frac{F}{\text{fB.fT}} = \frac{2}{0,51} = 4 \text{ kN (< Co)}$$

3) P =
$$\frac{\text{Pmax.}}{\text{C/F}} = \frac{50}{16,1/2} = 6,21 \text{ ($$

4) V =
$$\frac{dk - b - f}{1000 \times 57.3 \times 60} = \frac{-28.6 \times 20 \times 150}{1000 \times 57.3 \times 60} = 0.025$$
 m/s (V. Max. = 0.25)

5)
$$PL = pV = 6.21 \times 0.025 = 0.155 (< PL max. = 0.5)$$

6) LH = 3 fL x fT x fG x fN
$$\left(\frac{C/F}{V}\right)$$

= 3 x 2 x 1 x 1,8 x 5
$$\left(\frac{8,05}{0,025}\right)$$
 = 17.388 h

Le GI 16 et le GIXS16 répondent aussi à l'utilisation. Faire un choix selon l'utilisation et le prix.

La tête de bielle est soumise à 4 forces radiales pendant 4 durées différentes :

F1 = 2 KN - T1 = 50 % - F2 = 4 KN - t2 = 16 %

F3 = 2,4 KN - T3 = 24 % F4 = 1 KN - T4 = 10 %

Charge axiale = 0.65 KN - b = 30° - 60 oscill/mn

Température = 70° C - Lubrification régulière impossible.

On élimine GAOW (mouvement restreint) et GARSW (environnement non corrosif) Restent : GASW et GAXSW .

$$Fm = 0.1 \sqrt{\sum F_i^2 t_i} = 2.19 \text{ kN}$$

$$F = Fm + Y Fa = 2,19 + 1,5 \times 0,65 = 3,17 \text{ kN}$$

$$(Y = 1.5 pour Fa/Fm = 0.65/2.19 = 0.3)$$

1) Cor =
$$\frac{F}{\text{fB. fT}} = \frac{3.17}{05 \text{ x 1}} = 6.34 \text{ kN}$$

on choisit un GASW 12 (Co = 23,5 et C = 32)

3)
$$P = \frac{Pmax.}{C/F} = \frac{100}{32/3,17} = 9,91 \text{ N/mm}^2$$

4)
$$V = \frac{dk - b \times f}{1000 \times 57.3 \times 60} = \frac{22.2 \times 30 \times 60}{1000 \times 57.3 \times 60} = 0.011 \text{ m/s} < Vmax. = 1 \text{ m/s}$$

Le GAXSW12 convient également.

5)
$$PL = P \times V = 9.91 \times 0.011 = 0.11 < PL \text{ max.} (1.3 \text{ W/mm}^2)$$

6) LH = 3 fL x fT x fG x fN
$$\left(\frac{C/F}{V}\right)$$

=
$$3 \times 1 \times 1 \times 3.2 \times 1 \left(\frac{10.09}{0.005} \right) 0.011 = 8800 \text{ heures}$$